skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Tsai, Victor_C"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. SUMMARY The recent developments in array-based surface-wave tomography have made it possible to directly measure apparent phase velocities through wave front tracking. While directionally dependent measurements have been used to infer intrinsic $$2\psi $$ azimuthal anisotropy (with a 180° periodicity), a few studies have also demonstrated strong but spurious $$1\psi $$ azimuthal anisotropy (360° periodicity) near major structure boundaries particularly for long period surface waves. In such observations, Rayleigh waves propagating in the direction perpendicular to the boundary from the slow to the fast side persistently show a higher apparent velocity compared to waves propagating in the opposite direction. In this study, we conduct numerical and theoretical investigations to explore the effect of scattering on the apparent Rayleigh-wave phase velocity measurement. Using 2-D spectral-element numerical wavefield simulations, we first reproduce the observation that waves propagating in opposite directions show different apparent phase velocities when passing through a major velocity contrast. Based on mode coupling theory and the locked mode approximation, we then investigate the effect of the scattered fundamental-mode Rayleigh wave and body waves interfering with the incident Rayleigh wave separately. We show that scattered fundamental-mode Rayleigh waves, while dominating the scattered wavefield, mostly cause short wavelength apparent phase velocity variations that could only be studied if the station spacing is less than about one tenth of the surface wave wavelength. Scattered body waves, on the other hand, cause longer wavelength velocity variations that correspond to the existing real data observations. Because of the sensitivity of the $$1\psi $$ apparent anisotropy to velocity contrasts, incorporating such measurements in surface wave tomography could improve the resolution and sharpen the structural boundaries of the inverted model. 
    more » « less
  2. Abstract Accurate precipitation monitoring is crucial for understanding climate change and rainfall-driven hazards at a local scale. However, the current suite of monitoring approaches, including weather radar and rain gauges, have different insufficiencies such as low spatial and temporal resolution and difficulty in accurately detecting potentially destructive precipitation events such as hailstorms. In this study, we develop an array-based method to monitor rainfall with seismic nodal stations, offering both high spatial and temporal resolution. We analyze seismic records from 1825 densely spaced, high-frequency seismometers in Oklahoma, and identify signals from nine precipitation events that occurred during the one-month station deployment in 2016. After removing anthropogenic noise and Earth structure response, the obtained precipitation spatial pattern mimics the one from a nearby operational weather radar, while offering higher spatial (~ 300 m) and temporal (< 10 s) resolution. We further show the potential of this approach to monitor hail with joint analysis of seismic intensity and independent precipitation rate measurements, and advocate for coordinated seismological-meteorological field campaign design. 
    more » « less
  3. Abstract Understanding the generation of damaging, high‐frequency ground motions during earthquakes is essential both for fundamental science and for effective hazard preparation. Various theories exist regarding the origin of high‐frequency ground motions, including the standard paradigm linked to slip heterogeneity on the rupture plane, and alternative perspectives associated with fault complexity. To assess these competing hypotheses, we measure ground motion amplitudes in different frequency bands for 3 ≤ M ≤ 5.8 earthquakes in Southern California and compare them to empirical ground motion models. We utilize a Bayesian inference technique called the Integrated Nested Laplace Approximation (INLA) to identify earthquake source regions that produce higher or lower ground motions than expected. Our analysis reveals a strong correlation between fault complexity measurements and the high‐frequency ground motion event terms identified by INLA. These findings suggest that earthquakes on complex faults (or fault networks) lead to stronger‐than‐expected ground motions at high frequencies. 
    more » « less